RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 303, Pages 186–192 (Mi tm3946)

Uniformly convergent Fourier series and multiplication of functions

V. V. Lebedev

National Research University Higher School of Economics, ul. Tallinskaya 34, Moscow, 123458 Russia

Abstract: Let $U(\mathbb T)$ be the space of all continuous functions on the circle $\mathbb T$ whose Fourier series converges uniformly. Salem's well-known example shows that a product of two functions in $U(\mathbb T)$ does not always belong to $U(\mathbb T)$ even if one of the factors belongs to the Wiener algebra $A(\mathbb T)$. In this paper we consider pointwise multipliers of the space $U(\mathbb T)$, i.e., the functions $m$ such that $mf\in U(\mathbb T)$ whenever $f\in U(\mathbb T)$. We present certain sufficient conditions for a function to be a multiplier and also obtain some Salem-type results.

Keywords: uniformly convergent Fourier series, function spaces, multiplication operators.

UDC: 517.51

MSC: 42A20, 42A45, 42B35

Received: April 1, 2018

DOI: 10.1134/S0371968518040143


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 303, 171–177

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025