RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2019 Volume 304, Pages 149–158 (Mi tm3948)

This article is cited in 1 paper

Hermitian Metric and the Infinite Dihedral Group

B. Goldberg, R. Yang

Department of Mathematics and Statistics, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA

Abstract: For a tuple $A=(A_1,A_2,\dots ,A_n)$ of elements in a unital Banach algebra $\mathcal B$, the associated multiparameter pencil is $A(z)=z_1 A_1 + z_2 A_2 + \dots +z_n A_n$. The projective spectrum $P(A)$ is the collection of $z\in \mathbb C^n$ such that $A(z)$ is not invertible. Using the fundamental form $\Omega _A=-\omega _A^*\wedge \omega _A$, where $\omega _A(z) = A^{-1}(z)\,dA(z)$ is the Maurer–Cartan form, R. Douglas and the second author defined and studied a natural Hermitian metric on the resolvent set $P^c(A)=\mathbb{C}^n\setminus P(A)$. This paper examines that metric in the case of the infinite dihedral group, $D_\infty = \langle a,t\mid a^2=t^2 =1\rangle $, with respect to the left regular representation $\lambda $. For the non-homogeneous pencil $R(z) = I+z_1\lambda (a)+z_2\lambda (t)$, we explicitly compute the metric on $P^c(R)$ and show that the completion of $P^c(R)$ under the metric is $\mathbb C^2\setminus \{(\pm 1,0), (0,\pm 1)\}$, which rediscovers the classical spectra $\sigma (\lambda (a))=\sigma (\lambda (t))=\{\pm 1\}$. This paper is a follow-up of the papers by R. G. Douglas and R. Yang (2018) and R. Grigorchuk and R. Yang (2017).

Keywords: projective spectrum, infinite dihedral group, projective resolvent set, left regular representation, Fuglede–Kadison determinant.

UDC: 517.986+517.984+512.547

MSC: Primary 47A10; Secondary 51M99

Received: May 7, 2018
Revised: September 5, 2018
Accepted: September 6, 2018

DOI: 10.4213/tm3948


 English version:
Proceedings of the Steklov Institute of Mathematics, 2019, 304, 136–145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025