RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 303, Pages 155–168 (Mi tm3950)

This article is cited in 6 papers

Kolmogorov width and approximate rank

B. S. Kashinab, Yu. V. Malykhinab, K. S. Ryutinb

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Laboratory "High-Dimensional Approximation and Applications", Lomonosov Moscow State University, Moscow, 119991 Russia

Abstract: Closely related notions of the Kolmogorov width and the approximate rank of a matrix are considered. New estimates are established in approximation problems related to the width of the set of characteristic functions of intervals; the multidimensional case (characteristic functions of parallelepipeds) is also considered.

UDC: 517.518.8

Received: May 30, 2018

DOI: 10.1134/S037196851804012X


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 303, 140–153

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025