RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2019 Volume 304, Pages 123–136 (Mi tm3963)

This article is cited in 5 papers

Estimate for the Accuracy of a Backward Procedure for the Hamilton–Jacobi Equation in an Infinite-Horizon Optimal Control Problem

A. L. Bagnoa, A. M. Tarasyevba

a Ural Federal University named after the First President of Russia B. N. Yeltsin, ul. Mira 19, Yekaterinburg, 620002 Russia
b N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia

Abstract: We consider an infinite-horizon optimal control problem with an integral objective functional containing a discount factor in the integrand. A specific feature of the problem is the assumption that the integrand may be unbounded. The main result of the paper is an estimate of the approximation accuracy in a backward procedure for solving the Hamilton–Jacobi equation corresponding to the optimal control problem.

Keywords: optimal control, infinite horizon, value function, Hamilton–Jacobi equation, discrete approximation, accuracy estimate.

UDC: 517.977

Received: September 3, 2018
Revised: October 9, 2018
Accepted: November 29, 2018

DOI: 10.4213/tm3963


 English version:
Proceedings of the Steklov Institute of Mathematics, 2019, 304, 110–123

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024