RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2003 Volume 241, Pages 254–264 (Mi tm399)

On the Conjectures of Artin and Shafarevich–Tate

S. G. Tankeev

Vladimir State University

Abstract: For an arithmetic model $\pi\colon X\to\operatorname{Spec}A$ of a smooth projective variety $V$ over a number field $k$, the interrelations between the conjecture of Artin about the finiteness of $\mathrm{Br}(X)$ and the conjecture of Shafarevich–Tate about the finiteness of $\text{III}(\operatorname {Spec}A,\mathrm{Pic}^0(V))$ are studied.

UDC: 512.6

Received in November 2002


 English version:
Proceedings of the Steklov Institute of Mathematics, 2003, 241, 238–248

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025