RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2019 Volume 305, Pages 29–39 (Mi tm3991)

This article is cited in 2 papers

On Addition Theorems Related to Elliptic Integrals

Malkhaz Bakuradzea, Vladimir V. Vershininbc

a Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Chavchavadze Ave. 1, 0179 Tbilisi, Georgia
b Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, Case courrier 051, Place Eugène Bataillon, 34090 Montpellier, France
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090 Russia

Abstract: We present formulas for the components of the Buchstaber formal group law and its exponent over $\mathbb Q[p_1,p_2,p_3,p_4]$. This leads to an addition theorem for the general elliptic integral $\int _0^x dt/R(t)$ with $R(t)=\sqrt {1+p_1t+p_2t^2+p_3t^3+p_4t^4}$. The study is motivated by Euler's addition theorem for elliptic integrals of the first kind.

Keywords: addition theorem, complex elliptic genus, formal group law.

UDC: 512.54+515.1

MSC: 33E05, 55N22

Received: September 5, 2018
Revised: January 18, 2019
Accepted: March 2, 2019

DOI: 10.4213/tm3991


 English version:
Proceedings of the Steklov Institute of Mathematics, 2019, 305, 22–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024