This article is cited in
4 papers
On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
I. A. Panina,
C. Walterb a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, 191023 Russia
b Laboratoire J.-A. Dieudonné (UMR 7351 du CNRS), Département de mathématiques, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
Abstract:
We reconstruct hermitian
$K$-theory via algebraic symplectic cobordism. In the motivic stable homotopy category
$\mathrm {SH}(S)$, there is a unique morphism
$\varphi \colon \mathbf {MSp}\to \mathbf {BO}$ of commutative ring
$T$-spectra which sends the Thom class
$\mathrm {th}^{\mathbf {MSp}}$ to the Thom class
$\mathrm {th}^{\mathbf {BO}}$. Using
$\varphi $ we construct an isomorphism of bigraded ring cohomology theories on the category
$\mathcal Sm\mathcal Op/S$, $\overline \varphi \colon \mathbf {MSp}^{*,*}(X,U)\otimes _{\mathbf {MSp}^{4*,2*}(\mathrm {pt})} \mathbf {BO}^{4*,2*}(\mathrm {pt}) \cong \mathbf {BO}^{*,*}(X,U)$. The result is an algebraic version of the theorem of Conner and Floyd reconstructing real
$K$-theory using symplectic cobordism. Rewriting the bigrading as $\mathbf {MSp}^{p,q}=\mathbf {MSp}^{[q]}_{2\smash {q-p}}$, we have an isomorphism $\overline \varphi \colon \mathbf {MSp}^{[*]}_*(X,U)\otimes _{\mathbf {MSp}^{[2*]}_0(\mathrm {pt})} \mathrm {KO}^{[2*]}_0(\mathrm {pt}) \cong \mathrm {KO}^{[*]}_*(X,U)$, where the
$\mathrm {KO}^{[n]}_i(X,U)$ are Schlichting's hermitian
$K$-theory groups.
UDC:
512.666+
512.732.2 Received: April 8, 2019Revised: May 18, 2019Accepted: July 16, 2019
DOI:
10.4213/tm4028