RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2019 Volume 307, Pages 78–99 (Mi tm4038)

This article is cited in 4 papers

Arithmetic of Certain $\ell $-Extensions Ramified at Three Places

L. V. Kuz'min

National Research Center “Kurchatov Institute,” pl. Akademika Kurchatova 1, Moscow, 123182 Russia

Abstract: Let $\ell $ be a regular odd prime number, $k$ the $\ell $th cyclotomic field, $k_\infty $ the cyclotomic $\mathbb Z_\ell $-extension of $k$, $K$ a cyclic extension of $k$ of degree $\ell $, and $K_\infty =K\cdot k_\infty $. Under the assumption that there are exactly three places not over $\ell $ that ramify in the extension $K_\infty /k_\infty $ and $K$ satisfies some additional conditions, we study the structure of the Iwasawa module $T_\ell (K_\infty )$ of $K_\infty $ as a Galois module. In particular, we prove that $T_\ell (K_\infty )$ is a cyclic $G(K_\infty /k_\infty )$-module and the Galois group $\Gamma =G(K_\infty /K)$ acts on $T_\ell (K_\infty )$ as $\sqrt {\varkappa }$, where $\varkappa \colon \Gamma \to \mathbb Z_\ell ^\times $ is the cyclotomic character.

UDC: 511.62

Received: May 8, 2019
Revised: June 23, 2019
Accepted: June 30, 2019

DOI: 10.4213/tm4038


 English version:
Proceedings of the Steklov Institute of Mathematics, 2019, 307, 65–84

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024