RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2020 Volume 308, Pages 101–115 (Mi tm4078)

This article is cited in 4 papers

Extraction of Several Harmonics from Trigonometric Polynomials. Fejér-Type Inequalities

D. G. Vasilchenkova, V. I. Danchenko

Vladimir State University Named after Alexander and Nikolay Stoletovs, ul. Gor'kogo 87, Vladimir, 600000 Russia

Abstract: Given a trigonometric polynomial $T_n(t)=\sum _{k=1}^n\tau _k(t)$, $\tau _k(t):=a_k\cos kt+b_k\sin kt$, we consider the problem of extracting the sum of harmonics $\sum \tau _{\mu _s}(t)$ of prescribed orders $\mu _s$ by the method of amplitude and phase transformations. Such transformations map the polynomials $T_n(t)$ into similar ones using two simple operations: the multiplication by a real constant $X$ and the shift by a real phase $\lambda $, i.e., $T_n(t)\mapsto XT_n(t-\lambda )$. We represent the sum of harmonics as a sum of such polynomials and then use this representation to obtain sharp Fejér-type estimates.

UDC: 517.53

Received: March 29, 2019
Revised: July 10, 2019
Accepted: December 25, 2019

DOI: 10.4213/tm4078


 English version:
Proceedings of the Steklov Institute of Mathematics, 2020, 308, 92–106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024