RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 312, Pages 294–312 (Mi tm4130)

This article is cited in 3 papers

Weighted Fourier Inequalities and Boundedness of Variation

Sergey Yu. Tikhonovabc

a Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
b ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
c Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra (Cerdanyola del Vallès), Spain

Abstract: We study the trigonometric series $\sum _{n=1}^\infty \lambda _n \cos nx$ and $\sum _{n=1}^\infty \lambda _n \sin nx$ with $\{\lambda _n\}$ being a sequence of bounded variation. Let $\psi $ denote the sum of such a series. We obtain necessary and sufficient conditions for the validity of the weighted Fourier inequality $\left (\int _0^\pi |\psi (x)|^q \omega (x)\,dx\right )^{1/q} \le C\!\left (\sum _{n=1}^\infty u_n\left (\sum _{k=n}^\infty |\lambda _{k}-\lambda _{k+1}|\right )^p \right )^{1/p}$, $0<p\le q<\infty $, in terms of the weight $\omega $ and the weighted sequence $\{u_n\}$. Applications to the series with general monotone coefficients are given.

Keywords: Fourier series/transforms, weighted norm inequalities, Hardy–Littlewood type theorems, general monotone sequences.

UDC: 517.518.4

MSC: Primary 42A10; Secondary 41A17, 40A30, 42A16

Received: April 15, 2020
Revised: September 16, 2020
Accepted: October 9, 2020

DOI: 10.4213/tm4130


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 312, 282–300

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025