RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 312, Pages 236–250 (Mi tm4131)

On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line

D. V. Prokhorov

Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680000 Russia

Abstract: Let $g$ be a Lebesgue measurable function on an interval $I\subset \mathbb R$. We find conditions on $g$ under which the mapping $f\mapsto \int _I g(x)(Df)(x)\,dx$ is a continuous linear functional on a weighted first-order Sobolev space $W_{p,p}^1(I)$; we also obtain estimates for the norm of this functional in $[W_{p,p}^1(I)]^*$.

UDC: 517.51

Received: April 24, 2020
Revised: August 18, 2020
Accepted: October 6, 2020

DOI: 10.4213/tm4131


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 312, 226–240

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025