RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 312, Pages 22–42 (Mi tm4153)

This article is cited in 1 paper

Optimal Cubature Formulas on Classes of Periodic Functions in Several Variables

D. B. Bazarkhanov

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science of the Republic of Kazakhstan, Pushkina Str. 125, Almaty, 050010, Kazakhstan

Abstract: We establish sharp order estimates for the error of optimal cubature formulas on the Nikol'skii–Besov and Lizorkin–Triebel type spaces, $B^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$ and $L^{s\,\mathtt {m}}_{p\,q}(\mathbb T^m)$, respectively, for a number of relations between the parameters $s$, $p$, $q$, and $\mathtt {m}$ ($s=(s_1,\dots ,s_n)\in \mathbb R^n_+$, $1\leq p,q\leq \infty $, $\mathtt {m}=(m_1,\dots ,m_n)\in \mathbb N ^n$, $m=m_1+\dots +m_n$). Lower estimates are proved via Bakhvalov's method. Upper estimates are based on Frolov's cubature formulas.

UDC: 517.518.8

Received: August 12, 2020
Revised: September 4, 2020
Accepted: October 8, 2020

DOI: 10.4213/tm4153


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 312, 16–36

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025