RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 312, Pages 259–271 (Mi tm4156)

This article is cited in 3 papers

Weakly Canceling Operators and Singular Integrals

D. M. Stolyarov

Department of Mathematics and Computer Science, St. Petersburg State University, Line 14 (Vasilyevsky Island), 29, St. Petersburg, 199178 Russia

Abstract: We suggest an elementary harmonic analysis approach to canceling and weakly canceling differential operators, which allows us to extend these notions to the anisotropic setting and replace differential operators with Fourier multiplies with mild smoothness regularity. In this more general setting of anisotropic Fourier multipliers, we prove the inequality $\|f\|_{L_\infty } \lesssim \|Af\|_{L_1}$ if $A$ is a weakly canceling operator of order $d$ and the inequality $\|f\|_{L_2} \lesssim \|Af\|_{L_1}$ if $A$ is a canceling operator of order $d/2$, provided $f$ is a function of $d$ variables.

UDC: 517.983.37

Received: June 11, 2020
Revised: October 11, 2020
Accepted: November 9, 2020

DOI: 10.4213/tm4156


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 312, 249–260

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025