RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 314, Pages 103–133 (Mi tm4164)

Kloosterman Sums with Primes and Solvability of a Congruence with Inverse Residues

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The problem of the solvability of the congruence $g(p_1)+\dots +g(p_k)\equiv m\pmod {q}$ in primes $p_1,\dots ,p_k\leq N$, $N\leq q^{1-\gamma }$, $\gamma >0$, is addressed. Here $g(x)\equiv a\overline {x}+bx\pmod {q}$, $\overline {x}$ is the inverse of the residue $x$, i.e., $\overline {x}x\equiv 1\pmod {q}$, $q\geq 3$, and $a$, $b$, $m$, and $k\geq 3$ are arbitrary integers with $(ab,q)=1$. The analysis of this congruence is based on new estimates of the Kloosterman sums with primes. The main result of the study is an asymptotic formula for the number of solutions in the case when the modulus $q$ is divisible by neither $2$ nor $3$.

UDC: 511.33

Received: June 2, 2020
Revised: October 19, 2020
Accepted: November 1, 2020

DOI: 10.4213/tm4164


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 314, 96–126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025