RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 314, Pages 97–102 (Mi tm4187)

This article is cited in 1 paper

On Irregularity of Finite Sequences

S. V. Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: A sequence $(x_1,x_2,\dots ,x_{N+d})$ of numbers in $[0,1)$ is said to be $N$-regular with at most $d$ irregularities if for every $n=1,\dots ,N$ each of the intervals $[0,1),[1,2),\dots ,[n-1,n)$ contains at least one element of the sequence $(nx_1,nx_2,\dots ,nx_{n+d})$. The maximum $N$ for which there exists an $N$-regular sequence with at most $d$ irregularities is denoted by $s(d)$. We show that $s(d)\ge 2d$ for any positive integer $d$ and that $s(d)<200d$ for all sufficiently large $d$.

Keywords: distribution of sequences of real numbers.

UDC: 511.216

Received: August 31, 2020
Revised: January 20, 2021
Accepted: February 26, 2021

DOI: 10.4213/tm4187


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 314, 90–95

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025