RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2003 Volume 243, Pages 46–52 (Mi tm419)

Positive Values of Harmonic Polynomials

N. N. Andreeva, V. A. Yudinb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Moscow Power Engineering Institute

Abstract: It is proved that, among all second-order spherical harmonics $Y_2$, the quantity $\mathrm {meas}\{x\in S^2\colon Y_2(x)\ge 0\}$ attains its minimal value at a zonal polynomial. For harmonics of higher even orders, the situation is different. Several examples are considered.

UDC: 517.5

Received in May 2003


 English version:
Proceedings of the Steklov Institute of Mathematics, 2003, 243, 39–45

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025