RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2021 Volume 314, Pages 71–96 (Mi tm4198)

This article is cited in 1 paper

Bounds of Multiplicative Character Sums over Shifted Primes

Bryce Kerr

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

Abstract: For an integer $q$, let $\chi $ be a primitive multiplicative character mod $q$. For integer $a$ coprime to $q$, we obtain a bound of the form $\bigl |\sum _{n\le N}\Lambda (n)\chi (n+a)\bigr |\le N/q^\delta $, $N\ge q^{3/4+\varepsilon }$, where $\Lambda (n)$ is the von Mangoldt function. This improves on a series of previous results.

UDC: 511.321

MSC: 11L20, 11L40

Received: July 31, 2020
Revised: February 28, 2021
Accepted: June 23, 2021

DOI: 10.4213/tm4198


 English version:
Proceedings of the Steklov Institute of Mathematics, 2021, 314, 64–89

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025