RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 316, Pages 376–389 (Mi tm4214)

This article is cited in 1 paper

Moment Characteristics of a Random Mapping with Restrictions on Component Sizes

A. L. Yakymiv

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: Let $\mathfrak {S}_n$ be the semigroup of mappings of an $n$-element set $X$ into itself. For a set $D\subseteq \mathbb N$, denote by $\mathfrak {S}_n(D)$ the family of those mappings in $\mathfrak {S}_n$ whose component sizes belong to $D$. Suppose that a random mapping $\sigma _n=\sigma _n(D)$ is uniformly distributed on $\mathfrak {S}_n(D)$. We consider a class of sets $D\subseteq \mathbb N$ with positive densities in the set $\mathbb N$ of positive integers. Let $\zeta _n$ be the number of components of the random mapping $\sigma _n$. We find asymptotic formulas for the expectation and variance of the random variable $\zeta _n$ as $n\to \infty $.

Keywords: random mappings, total number of components of a random mapping.

UDC: 519.212.2

Received: April 14, 2021
Revised: June 12, 2021
Accepted: September 28, 2021

DOI: 10.4213/tm4214


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 316, 356–369

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025