RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 316, Pages 32–46 (Mi tm4217)

This article is cited in 4 papers

Capacity of the Range of Branching Random Walks in Low Dimensions

Tianyi Bai, Yueyun Hu

LAGA, Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, F-93430 Villetaneuse, France

Abstract: Consider a branching random walk $(V_u)_{u\in \mathcal T^{\mathrm{IGW}}}$ in $\mathbb Z^d$ with the genealogy tree $\mathcal T^{\mathrm{IGW}}$ formed by a sequence of i.i.d. critical Galton–Watson trees. Let $R_n$ be the set of points in $\mathbb Z^d$ visited by $(V_u)$ when the index $u$ explores the first $n$ subtrees in $\mathcal T^{\mathrm{IGW}}$. Our main result states that for $d\in \{3,4,5\}$, the capacity of $R_n$ is almost surely equal to $n^{(d-2)/{2}+o(1)}$ as $n\to \infty $.

Keywords: branching random walk, tree-indexed random walk, capacity.

UDC: 519.218.2

MSC: 60J80, 60J65

Received: April 22, 2021
Revised: July 8, 2021
Accepted: October 13, 2021

DOI: 10.4213/tm4217


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 316, 26–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025