RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 316, Pages 169–194 (Mi tm4231)

This article is cited in 2 papers

Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment

Ion Grama, Quansheng Liu, Erwan Pin

Université Bretagne-Sud, LMBA UMR CNRS 6205, 56000 Vannes, France

Abstract: Consider a $d$-type supercritical branching process $Z_n^i=(Z_n^i(1),\ldots ,Z_n^i(d))$, $n\geq 0$, in an independent and identically distributed random environment $\xi =(\xi _0,\xi _1,\ldots )$, starting with one initial particle of type $i$. In a previous paper we have established a Kesten–Stigum type theorem for $Z_n^i$, which implies that for any $1\leq i,j\leq d$, $Z_n^i(j)/\mathbb E_\xi Z_n^i(j) \to W^i$ in probability as $n \to +\infty $, where $\mathbb E_\xi Z_n^i(j)$ is the conditional expectation of $Z_n^i(j)$ given the environment $\xi $ and $W^i$ is a non-negative and finite random variable. The goal of this paper is to obtain a necessary and sufficient condition for the convergence in $L^p$ of $Z_n^i(j)/\mathbb E_\xi Z_n^i(j)$, and to prove that the convergence rate is exponential. To this end, we first establish the corresponding results for the fundamental martingale $(W_n^i)$ associated to the branching process $(Z_n^i)$.

UDC: 519.218.2+519.214.6

Received: February 19, 2021
Revised: May 8, 2021
Accepted: November 10, 2021

DOI: 10.4213/tm4231


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 316, 160–183

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025