RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2003 Volume 243, Pages 104–126 (Mi tm424)

This article is cited in 2 papers

On Sharp Constants in Inequalities for the Modulus of a Derivative

V. I. Burenkova, V. A. Gusakovb

a Cardiff University
b Moscow Interbank Currency Exchange

Abstract: For every $1\le r\le\infty$, we solve a Kolmogorov-type problem of describing all triples of numbers $\mu _0,\mu _1,\mu _2\ge 0$ for which there exists a function $f$ with an absolutely continuous derivative on the interval $[0,1]$ such that $\|f\|_{L_\infty (0,1)}=\mu _0$, $|f'(x)|=\mu _1$, and $\|f''\|_{L_r(0,1)}=\mu _2$, where $x$ is a fixed point in the interval $[0,1]$.

UDC: 517.97

Received in April 2003


 English version:
Proceedings of the Steklov Institute of Mathematics, 2003, 243, 98–119

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025