RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 319, Pages 120–133 (Mi tm4255)

Piecewise General Monotone Functions and the Hardy–Littlewood Theorem

M. I. Dyachenkoab, S. Yu. Tikhonovcde

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991 Russia
c Universitat Autònoma de Barcelona, Plaza Cívica, 08193 Bellaterra (Cerdanyola del Vallès), Spain
d Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
e ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

Abstract: We obtain necessary and sufficient conditions for an integrable piecewise general monotone function to belong to an $L^p$ space with a weight of Muckenhoupt class $\mathbb A_p$ in terms of the Fourier coefficients. We also find a sufficient condition for the Hardy transform of an arbitrary integrable function to belong to the same space.

UDC: 517.5

Received: January 17, 2022
Revised: March 14, 2022
Accepted: April 8, 2022

DOI: 10.4213/tm4255


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 319, 110–123

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024