RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2023 Volume 320, Pages 27–45 (Mi tm4259)

This article is cited in 2 papers

Simple Complex Tori of Algebraic Dimension 0

Tatiana Bandmana, Yuri G. Zarhinb

a Department of Mathematics, Bar-Ilan University, Ramat Gan, 5290002, Israel
b Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Abstract: Using Galois theory, we explicitly construct (in all complex dimensions $g\ge 2$) an infinite family of simple $g$-dimensional complex tori $T$ that enjoy the following properties:
$\bullet $ the Picard number of $T$ is $0;$ in particular, the algebraic dimension of $T$ is $0$;
$\bullet $ if $T^\vee $ is the dual of $T$, then $\mathrm {Hom}(T,T^\vee )=\{0\}$;
$\bullet $ the automorphism group $\mathrm {Aut}(T)$ of $T$ is isomorphic to $\{\pm 1\} \times \mathbb Z^{g-1}$;
$\bullet $ the endomorphism algebra $\mathrm {End}^0(T)$ of $T$ is a purely imaginary number field of degree $2g$.

Keywords: complex tori, algebraic dimension 0.

UDC: 515.177.4

MSC: 32M05, 32J27, 12F10, 14K20

Received: June 18, 2021
Revised: May 8, 2022
Accepted: May 10, 2022

DOI: 10.4213/tm4259


 English version:
Proceedings of the Steklov Institute of Mathematics, 2023, 320, 21–38

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024