RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 318, Pages 51–65 (Mi tm4277)

Any Suspension and Any Homology Sphere Are $2H$-Spaces

D. V. Gugnin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia

Abstract: We prove that the reduced suspension $X = \Sigma Y$ over any finite or countable connected polyhedron $Y$ can be endowed with a two-valued multiplication $\mu \colon X\times X \to \mathrm {Sym}^2 X$ satisfying the unit axiom: $\mu (e,x) = \mu (x,e) = [x,x]$ for all $x\in X$. If $X$ is a sphere $S^m$, $m = 1,3,7$, this is a classical result; for $X=S^2$, this is V. M. Buchstaber's theorem of 1990; and for $X=S^{2k+1}$, $k\ne 0,1,3$, this is our theorem of 2019. We also prove a similar statement for all $X$ that are smoothable homology spheres of arbitrary dimension and for $X=\mathbb R\mathrm P^m$, $m\ge 2$. The proof of one of the main results uses the following statement, which is of independent interest. Let $X$ and $Y$ be connected finite CW complexes and $f\colon X\to Y$ a continuous map inducing an isomorphism in integral homology. Then, for any $n\ge 2$, the map $\mathrm {Sym}^n f\colon \mathrm {Sym}^n X \to \mathrm {Sym}^n\kern 1pt Y$ also induces an isomorphism in integral homology.

Keywords: symmetric powers, $nH$-spaces, homology spheres.

UDC: 515.145

Received: April 25, 2022
Revised: May 24, 2022
Accepted: May 31, 2022

DOI: 10.4213/tm4277


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 318, 45–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025