RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 318, Pages 193–203 (Mi tm4279)

This article is cited in 2 papers

On the Component Group of a Real Algebraic Group

Dmitry A. Timashev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia

Abstract: For a connected linear algebraic group $G$ defined over $\mathbb R$, we compute the component group $\pi _0G(\mathbb R)$ of the real Lie group $G(\mathbb R)$ in terms of a maximal split torus $T_{\mathrm{s}}\subseteq G$. In particular, we recover a theorem of Matsumoto (1964) that each connected component of $G(\mathbb R)$ intersects $T_{\mathrm{s}}(\mathbb R)$. We provide explicit elements of $T_{\mathrm{s}}(\mathbb R)$ which represent all connected components of $G(\mathbb R)$. The computation is based on structure results for real loci of algebraic groups and on methods of Galois cohomology.

Keywords: real algebraic group, component group, split torus, real Galois cohomology.

UDC: 512.743+512.812+512.752

Received: March 26, 2022
Revised: May 25, 2022
Accepted: June 1, 2022

DOI: 10.4213/tm4279


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 318, 175–184

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025