RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 319, Pages 51–63 (Mi tm4280)

Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak

O. V. Besov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: For a domain $G\subset \mathbb R^n$ with an anisotropic peak, we construct integral representations of functions in terms of derivatives and establish conditions for the embedding $W_p^s(G)\subset L_q(G)$ of the Sobolev space in the Lebesgue space for $1\leq p<q\le \infty $.

Keywords: Sobolev space, domain with a peak, embedding theorem.

UDC: 517.518.232

Received: January 17, 2022
Revised: May 22, 2022
Accepted: May 30, 2022

DOI: 10.4213/tm4280


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 319, 43–55

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025