RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 318, Pages 5–16 (Mi tm4281)

Homology of the $MSU$ Spectrum

Semyon A. Abramyanab

a Skolkovo Institute of Science and Technology, Bol'shoi bul. 30, stroenie 1, Moscow, 121205 Russia
b Laboratory of Algebraic Geometry and Its Applications, HSE University, ul. Usacheva 6, Moscow, 119048 Russia

Abstract: We give a complete proof of the Novikov isomorphism $\varOmega ^{{SU}}\otimes \mathbb Z \bigl [\tfrac 12\bigr ]\cong \mathbb Z\bigl [\tfrac 12\bigr ] [y_2,y_3,\ldots ]$, $\deg y_i=2i$, where $\varOmega ^{{SU}}$ is the ${SU}$-bordism ring. The proof uses the Adams spectral sequence and a description of the comodule structure of $H_{\scriptscriptstyle\bullet}({M\kern -1pt SU};\mathbb F_p)$ over the dual Steenrod algebra $\mathfrak A_p^*$ with odd prime $p$, which was also missing in the literature.

UDC: 515.146.6

MSC: 55N22, 55S10, 57R77

Received: March 17, 2022
Revised: May 27, 2022
Accepted: June 20, 2022

DOI: 10.4213/tm4281


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 318, 1–12

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024