RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2023 Volume 320, Pages 278–286 (Mi tm4283)

New Results on the Periodicity Problem for Continued Fractions of Elements of Hyperelliptic Fields

V. P. Platonovab, M. M. Petruninb

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Nakhimovskii prosp. 36, bld. 1, Moscow, 117218 Russia

Abstract: We study the problem of describing square-free polynomials $f(x)$ of odd degree with periodic expansion of $\sqrt {f(x)}$ into a functional continued fraction in $k((x))$, where $k\subseteq \overline {\mathbb Q}$. We obtain a complete description of such polynomials $f(x)$ that does not depend on the field $k$ and the degree of a polynomial, provided that the degree $U$ of the fundamental $S$-unit of the corresponding hyperelliptic field $k(x)(\sqrt {f(x)})$ either does not exceed $12$ or is even and does not exceed $20$.

UDC: 511.6+511.2

Received: April 3, 2022
Revised: May 23, 2022
Accepted: June 2, 2022

DOI: 10.4213/tm4283


 English version:
Proceedings of the Steklov Institute of Mathematics, 2023, 320, 258–266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025