RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 317, Pages 198–209 (Mi tm4285)

Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces

Suyoung Choia, Mathieu Valléeb

a Department of Mathematics, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
b Université de Rennes 1, Institut de recherche mathématique de Rennes (IRMAR) – UMR CNRS 6625, 2 rue du Thabor, F-35000 Rennes, France

Abstract: A real toric manifold $X^{\Bbb R} $ is said to be cohomologically rigid over ${\Bbb Z} _2$ if every real toric manifold whose ${\Bbb Z} _2$-cohomology ring is isomorphic to that of $X^{\Bbb R} $ is actually diffeomorphic to $X^{\Bbb R} $. Not all real toric manifolds are cohomologically rigid over ${\Bbb Z} _2$. In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over ${\Bbb Z} _2$.

Keywords: real toric variety, real toric manifold, cohomological rigidity.

UDC: 515.14+515.16

MSC: 57S12 (57R19, 57R50)

Received: March 15, 2022
Revised: May 27, 2022
Accepted: June 8, 2022

DOI: 10.4213/tm4285


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 317, 178–188

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024