RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 318, Pages 17–30 (Mi tm4295)

This article is cited in 2 papers

Homogeneous Algebraic Varieties and Transitivity Degree

Ivan V. Arzhantsev, Yulia I. Zaitseva, Kirill V. Shakhmatov

Faculty of Computer Science, HSE University, Pokrovskii bul. 11, Moscow, 109028 Russia

Abstract: Let $X$ be an algebraic variety such that the group $\mathrm {Aut}(X)$ acts on $X$ transitively. We define the transitivity degree of $X$ as the maximum number $m$ such that the action of $\mathrm {Aut}(X)$ on $X$ is $m$-transitive. If the action of $\mathrm {Aut}(X)$ is $m$-transitive for all $m$, the transitivity degree is infinite. We compute the transitivity degree for all quasi-affine toric varieties and for many homogeneous spaces of algebraic groups. We also discuss a conjecture and open questions related to this invariant.

Keywords: algebraic variety, automorphism group, algebraic group, homogeneous space, quasi-affine variety, transitivity degree, infinite transitivity, toric variety, unirationality.

UDC: 512.745

MSC: Primary 14L30, 14R10; Secondary 13E10, 14M25, 20M32

Received: April 6, 2022
Revised: June 24, 2022
Accepted: June 30, 2022

DOI: 10.4213/tm4295


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 318, 13–25

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025