RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2022 Volume 318, Pages 166–176 (Mi tm4297)

Homology and Cohomology of the Lamplighter Lie Algebra

D. V. Millionshchikov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: It is shown that the lamplighter Lie algebra $\mathfrak l$ over the field of rational numbers, introduced by S. Ivanov, R. Mikhailov, and A. Zaikovskii, is isomorphic to the infinite-dimensional naturally graded Lie algebra of maximal class $\mathfrak m_0$. Y. Félix and A. Murillo proved that its $q$-dimensional homology $H_q(\mathfrak l,\mathbb Q)$ is infinite-dimensional. However, they failed to completely calculate the spaces $H_q(\mathfrak l,\mathbb Q)$, $q\ge 3$. In this paper, an infinite basis of the bigraded homology $H_{*,*}(\mathfrak l,\mathbb Q)$ is explicitly constructed using the results of D. Millionshchikov and A. Fialowski on the cohomology $H^*(\mathfrak l,\mathbb Q)$.

Keywords: homology, cohomology, lamplighter group, pronilpotent completion, Lie algebra of maximal class, $\mathfrak {sl}_2$-module.

UDC: 515.146.3+512.662.1

Received: April 5, 2022
Revised: June 28, 2022
Accepted: June 30, 2022

DOI: 10.4213/tm4297


 English version:
Proceedings of the Steklov Institute of Mathematics, 2022, 318, 150–160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025