RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2023 Volume 321, Pages 156–161 (Mi tm4319)

On Smooth Functions That Are Even on the Boundary of a Ball

S. E. Zhukovskiya, K. V. Storozhukb

a V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, ul. Profsoyuznaya 65, Moscow, 117997 Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia

Abstract: We show how to construct a smooth function without critical points on the ball $B^n$, $n>1$, that is even on its boundary $S^{n-1}$. In particular, it follows that the corresponding generalization of Rolle's theorem to dimensions $n>1$ does not hold.

UDC: 517.27

Received: March 28, 2022
Revised: July 10, 2022
Accepted: January 9, 2023

DOI: 10.4213/tm4319


 English version:
Proceedings of the Steklov Institute of Mathematics, 2023, 321, 143–148

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024