RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2023 Volume 321, Pages 108–117 (Mi tm4320)

This article is cited in 5 papers

The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$

A. V. Greshnov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia

Abstract: Using a generalization of the Agrachev–Barilari–Boscain method for proving the Rashevskii–Chow theorem, we estimate the minimum number $\mathcal {N}_{G_{3,3}}$ of segments of horizontal broken lines joining two arbitrary points on the six-dimensional two-step canonical Carnot group $G_{3,3}$ with corank $3$ horizontal distribution. We prove that $\mathcal {N}_{G_{3,3}}=3$.

Keywords: canonical Carnot group, Rashevskii–Chow theorem, horizontal broken line.

UDC: 517.97

Received: April 21, 2022
Revised: September 3, 2022
Accepted: January 9, 2023

DOI: 10.4213/tm4320


 English version:
Proceedings of the Steklov Institute of Mathematics, 2023, 321, 97–106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025