Abstract:
This paper is devoted to a priori estimates and blow-up of global smooth solutions to the Cauchy problem for nonlinear hyperbolic systems of conservation laws. A general approach is proposed to obtain integral a priori estimates for smooth solutions of such systems. An application to a system of equations for one-dimensional nonisentropic and isentropic flows of a polytropic gas is considered. Integral conditions for the initial data are found that give rise to the gradient catastrophe of such solutions.