Abstract:
We present a topological–analytical method for proving some results of the N. N. Bogolyubov averaging method for the case of an infinite time interval. The essence of the method is to combine topological methods of proving the existence of a periodic solution applied to the averaged system with Bogolyubov's theorem on the averaging on a finite time interval. The proposed approach allows us to dispense with the nondegeneracy condition for the Jacobi matrix from the classical theorems of the averaging method.
Keywords:averaging, averaging on an infinite interval, degenerate case, asymptotic stability, elliptic fixed point, center.