RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2024 Volume 324, Pages 109–123 (Mi tm4351)

This article is cited in 1 paper

On Some Properties of the Fractional Derivative of the Brownian Local Time

I. A. Ibragimovab, N. V. Smorodinaacb, M. M. Faddeevb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023 Russia
b St. Petersburg State University, 14 line 29B, Vasilyevsky Island, St. Petersburg, 199178 Russia
c Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: We study the properties of the fractional derivative $D_\alpha l(t,x)$ of order $\alpha <1/2$ of the Brownian local time $l(t,x)$ with respect to the variable $x$. This derivative is understood as the convolution of the local time with the generalized function $|x|^{-1-\alpha }$. We show that $D_\alpha l(t,x)$ appears naturally in Itô's formula for the process $|w(t)|^{1-\alpha }$. Using the martingale technique, we also study the limit behavior of $D_\alpha l(t,x)$ as $t\to \infty $.

Keywords: stochastic processes, local time, fractional derivative.

UDC: 519.2

Received: April 25, 2023
Revised: July 3, 2023
Accepted: July 10, 2023

DOI: 10.4213/tm4351


 English version:
Proceedings of the Steklov Institute of Mathematics, 2024, 324, 100–114

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024