RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2023 Volume 323, Pages 196–203 (Mi tm4358)

On the Best Recovery of a Family of Operators on the Manifold $\mathbb R^n\times \mathbb T^m$

G. G. Magaril-Il'yaevabc, E. O. Sivkovacd

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, str. 1, Moscow, 127051 Russia
c Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Sciences, ul. Vatutina 53, Vladikavkaz, 362027 Russia
d National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya ul. 14, Moscow, 111250 Russia

Abstract: Given a one-parameter family of operators on the manifold $\mathbb R^n\times \mathbb T^m$, we solve the problem of the best recovery of an operator for a given value of the parameter from inaccurate data on the operators for other values of the parameter from a certain compact set. We construct a family of best recovery methods. As a consequence, we obtain families of best recovery methods for the solutions of the heat equation and the Dirichlet problem for a half-space.

Keywords: best recovery, optimal method, Fourier transform, extremum problem.

UDC: 517.984.64

Received: May 10, 2023
Revised: June 20, 2023
Accepted: July 14, 2023

DOI: 10.4213/tm4358


 English version:
Proceedings of the Steklov Institute of Mathematics, 2023, 323, 188–196

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024