RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2024 Volume 324, Pages 51–59 (Mi tm4378)

Continuity of Operator Functions in the Topology of Local Convergence in Measure

A. M. Bikchentaev, O. E. Tikhonov

N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya ul. 35, Kazan, 420008 Russia

Abstract: Let a von Neumann algebra $\mathcal M$ of operators act on a Hilbert space $\mathcal {H}$, and let $\tau $ be a faithful normal semifinite trace on $\mathcal M$. Let $t_{\tau \textup {l}}$ be the topology of $\tau $-local convergence in measure on the *-algebra $S(\mathcal M,\tau )$ of all $\tau $-measurable operators. We prove the $t_{\tau \textup {l}}$-continuity of the involution on the set of all normal operators in $S(\mathcal M,\tau )$, investigate the $t_{\tau \textup {l}}$-continuity of operator functions on $S(\mathcal M,\tau )$, and show that the map $A\mapsto |A|$ is $t_{\tau \textup {l}}$-continuous on the set of all partial isometries in $\mathcal M$.

Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, local convergence in measure, continuity of operator functions.

UDC: 517.98

Received: June 20, 2023
Revised: October 5, 2023
Accepted: October 6, 2023

DOI: 10.4213/tm4378


 English version:
Proceedings of the Steklov Institute of Mathematics, 2024, 324, 44–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024