RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2024 Volume 327, Pages 63–78 (Mi tm4405)

On Diffeomorphisms with Orientable Codimension 1 Basic Sets and an Isolated Saddle

V. Z. Grines, E. V. Zhuzhomaa, V. S. Medvedeva

a HSE University – Nizhny Novgorod, Nizhny Novgorod, Russia

Abstract: We consider the class $\mathbb {G}_k^{\textup {diff}}(M^n;0,0,1)$ of diffeomorphisms $f: M^n\to M^n$ of a closed orientable $n$-manifold $M^n$, $n\geq 3$, that satisfy Smale's axiom A whose nonwandering set $\mathrm {NW}(f)$ consists of the following basic sets: (a) $k\geq 1$ nontrivial basic sets each of which is either an orientable connected expanding codimension $1$ attractor or an orientable connected contracting codimension $1$ repeller; (b) exactly one trivial basic set, an isolated saddle, whose separatrices do not intersect. For diffeomorphisms in $\mathbb {G}_k^{\textup {diff}}(M^n;0,0,1)$, we construct a certain equipped graph that gives a complete global conjugacy invariant on their nonwandering sets. We also describe the topological structure of the supporting manifolds $M^n$ for diffeomorphisms in the class $\mathbb {G}_k^{\textup {diff}}(M^n;0,0,1)$, $n\geq 3$, $n\neq 4$, $k\geq 2$.

Keywords: basic set, global conjugacy, attractor.

UDC: 517.938

Received: January 20, 2024
Revised: August 10, 2024
Accepted: December 30, 2024

DOI: 10.4213/tm4405


 English version:
Proceedings of the Steklov Institute of Mathematics, 2024, 327, 55–69

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025