RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2004 Volume 244, Pages 312–319 (Mi tm452)

This article is cited in 7 papers

Mean Distality and Tightness

D. Ornsteina, V. Weissb

a Stanford University
b Institute of Mathematics, Hebrew University of Jerusalem

Abstract: A relationship between the entropy invariant and a certain property of topological dynamical systems with a finite invariant measure $\mu$ is studied. This property means that, after removing a $\mu$-null set, there are no distinct mean proximal points in the system (a pair $x,y$ is mean proximal with respect to a homeomorphism $T$ of a compact metric space with a metric $d$ if $\varlimsup\frac1{2n+1}\sum^n_{-n} d(T^ix, T^iy) = 0$).

UDC: 513.83+513.88

Received in November 2000

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 244, 295–302

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025