RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2005 Volume 251, Pages 127–138 (Mi tm46)

Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space

M. Wolfa, A. D. Popova, A. G. Sergeevb

a Leibniz University of Hannover
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Noncommutative Seiberg–Witten equations on the noncommutative Euclidean space $\mathbb R^4_\theta$ are studied that are obtained from the standard Seiberg–Witten equations on $\mathbb R^4$ by replacing the usual product with the deformed Moyal $\star$-product. Nontrivial solutions of these noncommutative Seiberg–Witten equations are constructed that do not reduce to solutions of the standard Seiberg–Witten equations on $\mathbb R^4$ for $\theta \to 0$. Such solutions of the noncommutative equations on $\mathbb R^4_\theta$ exist even when the corresponding commutative Seiberg–Witten equations on $\mathbb R^4$ do not have any nontrivial solutions.

UDC: 514.8

Received in November 2004


 English version:
Proceedings of the Steklov Institute of Mathematics, 2005, 251, 121–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025