RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2007 Volume 258, Pages 185–200 (Mi tm483)

This article is cited in 4 papers

Hyperbolic Carathéodory Conjecture

S. L. Tabachnikova, V. Yu. Ovsienkob

a Department of Mathematics, Pennsylvania State University
b Institut Camille Jordan, Université Claude Bernard Lyon 1

Abstract: A quadratic point on a surface in $\mathbb R\mathrm P^3$ is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse–Wilczynski theorem.

UDC: 514.7

Received in November 2006

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2007, 258, 178–193

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025