Abstract:
The axiomatic formulation of quantum field theory (QFT) of the 1950's in terms of fields defined as operator valued Schwartz distributions is re-examined in the light of subsequent developments. These include, on the physical side, the construction of a wealth of (2-dimensional) soluble QFT models with quadratic exchange relations, and, on the mathematical side, the introduction of the Colombeau algebras of generalized functions. Exploiting the fact that energy positivity gives rise to a natural regularization of Wightman distributions as analytic functions in a tube domain, we argue that the flexible notions of Colombeau theory which can exploit particular regularizations is better suited (than Schwartz distributions) for a mathematical formulation of QFT.