Abstract:
The initiation of detonation by electric discharges and its propagation in channels and cylinders filled with a combustible mixture of hydrogen and an oxidant are studied with the use of a finite-difference method based on S. K. Godunov's scheme. The main attention is given to the stability of the two-dimensional wave structure of a detonation wave and to the conditions that ensure the formation and sustenance of the detonation combustion mode. This mode is a nonlinear oscillatory process related to the formation of compression jumps in the flow and their interaction with the leading shock wave. The problem of minimizing the energy of the detonation initiation by means of additional small-energy discharges is considered.