RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2000 Volume 228, Pages 236–245 (Mi tm503)

This article is cited in 5 papers

Simple Random Walks along Orbits of Anosov Diffeomorphisms

V. Y. Kaloshin, Ya. G. Sinai

Princeton University, Department of Mathematics

Abstract: We consider a Markov chain whose phase space is a $d$-dimensional torus. A point $x$ jumps to $x+\omega$ with probability $p(x)$ and to $x-\omega$ with probability $1-p(x)$. For Diophantine $\omega$ and smooth $p$ we prove that this Maslov chain has an absolutely continuous invariant measure and the distribution of any point after $n$ steps converges to this measure.

UDC: 531.19

Received in September 1999

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2000, 228, 224–233

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025