RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2007 Volume 259, Pages 106–133 (Mi tm572)

This article is cited in 9 papers

New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems

A. Yu. Kolesova, E. F. Mishchenkob, N. Kh. Rozovc

a P. G. Demidov Yaroslavl State University
b Steklov Mathematical Institute, Russian Academy of Sciences
c M. V. Lomonosov Moscow State University

Abstract: We carry out a detailed analysis of the existence, asymptotics, and stability problems for periodic solutions that bifurcate from the zero equilibrium state in systems with large delay. The account is based on a specific meaningful example given by a certain scalar nonlinear second-order differential–difference equation that is a mathematical model of a single-circuit $RCL$-oscillator with delay in a feedback loop.

UDC: 517.926

Received in March 2007


 English version:
Proceedings of the Steklov Institute of Mathematics, 2007, 259, 101–127

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024