RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2008 Volume 260, Pages 57–74 (Mi tm586)

This article is cited in 3 papers

Decompositions of the Sobolev–Clifford Modules and Nonlinear Variational Problems

I. A. Borovikov, Yu. A. Dubinskii

Moscow Power Engineering Institute (Technical University)

Abstract: We establish a general direct decomposition of modules and then, using this decomposition, prove representations of the Sobolev–Clifford modules as the sums of submodules of monogenic and comonogenic functions. We also show how the decompositions obtained can be applied to solving Stokes-type nonlinear variational problems.

UDC: 517.53+517.91

Received in June 2007


 English version:
Proceedings of the Steklov Institute of Mathematics, 2008, 260, 50–67

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025