RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2004 Volume 247, Pages 10–14 (Mi tm6)

This article is cited in 1 paper

A Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself

P. M. Akhmet'ev

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The problem of realizing a mapping $f\colon S^3 \to S^3$ of the $3$-dimensional sphere into itself in the ambient space $\mathbb R^6$ is reformulated in elementary terms. It is proved that, for $n=1,3,7$, there exists an equivariant mapping $F\colon S^n\times S^n\to S^n\times S^n$ such that a formal obstruction to its realization in $\mathbb R^{2n}$ is nontrivial.

UDC: 515.1

Received in March 2004


 English version:
Proceedings of the Steklov Institute of Mathematics, 2004, 247, 4–8

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025