RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 1999 Volume 225, Pages 46–51 (Mi tm712)

This article is cited in 2 papers

A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant

P. M. Akhmet'eva, P. J. Ecclesb

a Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
b University of Manchester

Abstract: The Kervaire invariant is a $Z/2$-invariant of framed manifolds of dimension $n=4k+2$. W. Browder proved that this invariant necessarily vanishes if $n+2$ is not a power of 2. We give a geometrical proof of this result using a characterization of the Kervaire invariant in terms of multiple points of immersions.

UDC: 515.16

Received in December 1998


 English version:
Proceedings of the Steklov Institute of Mathematics, 1999, 225, 40–44

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024