RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 1999 Volume 225, Pages 168–176 (Mi tm719)

This article is cited in 2 papers

On Atypical Values and Local Monodromies of Meromorphic Functions

S. M. Gusein-Zadea, I. Luengob, A. Melle-Hernándezb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Departamento de Álgebra, Universidad Complutense de Madrid

Abstract: A meromorphic function on a compact complex analytic manifold defines a $C^\infty$ locally trivial fibration over the complement to a finite set in the projective line $\mathbb{CP}^1$ – the bifurcation set. Loops around points of the bifurcation set give rise to corresponding monodromy transformations of this fibration. We show that the zeta-functions of these monodromy transformations can be expressed in local terms, namely, as integrals of zeta-functions of meromorphic germs with respect to the Euler characteristic. A particular case of meromorphic functions on the projective space $\mathbb{CP}^n$ are those defined by polynomial functions of $n$ variables. We describe some applications of this technique to polynomial functions.

UDC: 517.9

Received in December 1998


 English version:
Proceedings of the Steklov Institute of Mathematics, 1999, 225, 156–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024